3eNnsors & Motors

Misha G. and Shashank P.

OUTLINE

DIO Sensors

Analog Sensors
PWM
CAN Devices

Motors

WHAT IS A SENSOR? R

\
§ e A sensor is a device that picks up on information
§ within its environment and converts that to an

electrical signal to use create some sort of output
o Several types: ex. Distance, rotation,
temperature, force, etc.
e Applications

o Subsystems: ex. Intake, Elevators, Shooter

ROBORIO

W\

DI0 SENSORS

A\

WHAT IS DIO? &)

e Stands for “Digital Input/Output”

e Connects to the DIO ports on the RIO

e In most cases, digital signal is the voltage in a wire and it is a binary value, either 0 or 1
o Measured with the 5V difference between power & ground

e Sensors with two states are almost always digital sensors

e 10DIO ports on the RIO
o S — signal (white)
o V — power (red)

o <+ — ground (black)

SWITCHES & BUTTONS

e Buttons and switches are either pressed
or not pressed
e Can be used for physical constraints or to

detect game pieces

PHOTOGATE/BEAM BREAK

e Sensor with a laser that can be broken
e Two states
e Some example use cases
o Check height of an elevator
o See if object has passed through
some opening
o Check if game piece is loaded inside
of shooter

PROGRAMMING DIGITAL INPUTS)

public class SensorSubsystem implements Subsystem {
TalonSRX potMotor; Su bsystem
CANSparkMax switchMotor;
DigitalInput limitSwitch;

Digitallngut photoGate; e Define a Digitallnput and

AnalogPotentiometer potentiometer;

pass it through constructor

// Constructor for our subsytem. In this case its the sensorboard
public SensorSubsystem(CANSparkMax switchMotor, TalonSRX potMotor, DigitalInput limitSwitch,

this.switchMotor = switchMotor; o Create getPhOtOGatevalue()

this.potMotor = potMotor;

this. limitSwitch = limitSwitch; methOd to return the

this.photoGate = photoGate;
this.potentiometer = potentiometer;

boolean value

// Returns the value of the Photogate using the method .get() @) BOOlean from
public boolean getPhotoGateValue() {

return photoGate.get(); phOtOGateget()

N

PROGRAMMING DIGITAL INPUTS

Command:
e Call the subsystem methods
inside of the command
e Use the boolean values for
logic
Constants:
e Putthe DIO ID of the
photoswitch
Robot Container:
e Define the subsystems and
commands

@verride

- ic void execute() {
sensorBoard.getSwitchvalue()
sensorBoard.setSwitchMotor(

else
sensorBoard.setSwitchMotor(speed:0);

if (sensorBoard.getPhotoGatevalue()
sensorBoard.setPhotoMotor
(sensorBoard.getPotentiometervalue());

| else
sensorBoard.setPhotoMotor(speed:0);

W\

ANALOG SENSORS

A\

WHAT ARE ANALOG INPUTS?

e Used for sensors with values

that vary over a range
o Values range from 0 to
255

e Signalis continuous, but
provides different values
based on sensor readings

e 4 analog ports on the RIO

Tk

-].':.': 5 -‘f}‘ A

POTENTIOMETERS

e Variable resistor
o Output voltage changes
o Resistor — component that
regulates flow of electrical
current
o Turning the knob changes
the resistance between outer
two connections
o Middle connection = “wiper”
e Another way to measure rotation
on a robot
e Example usage: adjusting the
speed of a motor

wiper

PROGRAMMING POTENTIOMETERS)

ublic class SensorSubsystem implements Subsystem { .
; R Subsystem:

TalonSRX potMotor;

CANSparkfax switchMotor; e Construct AnalogPotentiometer
S e Adouble value is returned
DigitalInput photoGate;

AnalogPotentiometer potentiometer; through getpotentlome‘terValue()

// Constructor for our subsytem. In this case its the sensorboard |||eth0d

public SensorSubsystem(CANSparkMax switchMotor, TalonSRX potMotor, DigitalInput limitSwitch,

this.switchMotor = switchMotor; o Uses pOtentlometerget()

this.potMotor = potMotor;
this.limitSwitch = limitSwitch;

this.photoGate = photoGate;
this.potentiometer = potentiometer;

N

NN

PROGRAMMING POTENTIOMETERS

@override
- ic void execute() {
if (sensorBoard.getSwitchvalue()
sensorBoard.setSwitchMotor(speed:@.
else

sensorBoard.setSwitchMotor(speed:0);

if (sensorBoard.getPhotoGatevalue()
sensorBoard.setPhotoMotor
(sensorBoard.getPotentiometervalue());

else
sensorBoard.setPhotoMotor(speed:0);

&)

Command:
e Call the subsystem methods
inside of the command
e Use the double value for
logic
Constants:
e Put the Analog ID of the
potentiometer
Robot Container:
e Define subsystem and

command \\
N

/

HALL EFFECT SENSOR

e Similar to a switch but uses
the Hall effect to detect
magnetism

e Does not require physical
touch, can detect through
non-magnetic objects

e Can be digital or analog

o ThriftyBot Hall effect
sensor is digital
o CANCoder is analog

Hall
Sensor

Magnet - :'/'

P

Sidewards
Movement

-~

N

N

/

W\

PWM

A\

PWM - PULSE WIDTH MODULATION @2

e This type of data transfer is an output on

the RoboRIO 25% Duty Cycle
e The RoboRIO cycles the signal line on and
off at varying times 50% Duty Cycle
e Pulsing power supply on and off at a fixed |
voltage
e Ex. LED — brightness 134 Duty Cycle
e EXx. Motors — speed U U U U L
e Duty Cycle: current is flowing through the —T—

circuit a % of the time
e Ex. if 50% then on time = off time
e Used to get an analog output

Servos use the PWM signal as an
angle
100% duty cycle is maximum
angle
0% duty cycle is its minimum
angle
Used for small movements

o Pushing a basic locking

mechanism into place

PWM MOTOR CONTROLLERS

e Motor controllers take the input signal and scale
the range
o RoboRIO Motor
o 0O0Vto+5V => -12Vto+12V
e Common PWM motor controllers include the
REV SPARK Max and SPARK Flex

W\

GCAN DEVICGES

WHAT IS CAN?

A CAN Bus is a chain that allows devices

across your control system to
communicate with each other

L aoounaeae |

angRnonnag: |

L =2l
=

High (Yellow)
Low (Green)

Devices have to
be ID'd in order to
used them

N
PROS AND CONS OF CAN > @9

Modern system, many devices e Networks are fragile, one break
switching to it can destroy the entire network
e Reduces amount of wiring e Device firmware and CAN IDs
needed to connect multiple need to be set up properly
devices e CTRE and REV CAN buses can
e Communication is quick be incompatible (CAN 2.0 vs
CAN FD)

CAN SENSORS

CAN allows a lot of data to be transmitted to and
from multiple devices while minimizing wires
Examples of CAN sensors:

- Rotary encoders like the WCP ThroughBore

encoder or the CANcoder

- IMUs like the Pigeon 2.0

- Distance sensors like the CANrange
Digital sensors can be connected to the CAN bus
through devices like the CTRE CANdI

CAN TOPOLOGY COMPARISON R

Daisy Chain Star
- Devices connected in a line - Devices connected in branches
- Most common method - Much less common
- Recommended by part makers - Not recommended by part
like REV, CTRE and WCP manufacturers due to
- If one device fails, can bring instabilities and issues
down the entire network - If one device fails, network can

still work with other devices

Example:
CAN Star
device for B

\ branching

N o

SO

W\

MOTORS

A\

MOTORS

- Motors provide powerful, instant rotational
movement

- Powers everything from shooters to swerve
drive

- Most common motors include Kraken x44/x60
and Neo 1/2/Vortex

- Nowadays, most motors are brushless

_ 20 =

R R e
X444

N
COMPARING MOTORS A &)

BRI BT

Kraken X44 (7530 Kraken X60 (7.09 Kraken X44 &
RPM)
Nm) Kraken X60 ($218)

2. NEO Vortex (6784

RPM) ortex (2. Kraken X44 (4.05 2. NEO Vortex ($90)
3. Kraken X60 (6000 Nm) 3. NEO2.0($55)

RPM) 3. NEO 2.0 (3.75Nm)
4. NEO 2.0 (5676 4. NEO Vortex (3.6

RPM)

PROGRAMMING MOTORS)

public class SensorSubsystem implements Subsystem {

TalonSRX potMotor; Su bsyStem

CANSparkMax switchMotor;

Digitallnput limitSwitch; e Construct CANSparkMax Object
e G e Create method for setting the
nalogPotentiometer potentiometer;
motor speed
// Constructor for our subsytem. In this case its the sensorboard .
public SensorSubsystem(CANSparkMax switchMotor, TalonSRX potMotor, DigitalInput limitSwitch, o MOtor Speed IS Set aS a
this.switchMotor = switchMotor; percent du-ty CyC|e

this.potMotor = potMotor;

this. limitSwitch = limitSwitch; o Between-1.0and 1.0

this.photoGate = photoGate;
this.potentiometer = potentiometer;

// Sets the motors value using the CANSparkMax method .set(double speed)
public void setSwitchMotor(double val) {
switchMotor.set(val);

N

PROGRAMMING MOTORS

@override
ic volid execute() {
if (sensorBoard.getSwitchvalue()
sensorBoard.setSwitchMotor(speed:@.

else

sensorBoard.setSwitchMotor(speed:0);

sensorBoard.getPhotoGatevalue()

sensorBoard. setPhotoMotor

(sensorBoard.getPotentiometervalue());
else

sensorBoard.setPhotoMotor(speed:0);

Command:
Define subsystem methods inside

the command

&)

e Use sensor logic to determine
when/how to run motor
Constants:
e Define the CAN ID of the motor

o CAN ID found in REV

Hardware Client or Phoenix
Tuner, depending on motor

controller type

Robot Container:

Define the subsystem and
command

7

USING REV HARDWARE GLIENT

The Rev Client can
o Update Software
o Set ID for motor controllers
o Run motors
Using included USB-C wire,
connect to any SPARK Max that is
on the CAN Bus
If robot is on, all controllers is
detected
If robot is off, only 1 controller is
detected

aaaaaaaaaa

Q

SPARK MAX Motor Controller USB;CANID3 X

p b |

o0

USING PHOENIX TUNER X R

e Using Phoenix Tuner (X) you can
o Update Software
o SetID’s of CTRE
sensors/motor controllers
o Test motors and sensors
e Connect to the RoboRIO
e All the devices should appear on
the CAN Devices tab
e Can configure specific devices
individually

WHAT IS AN ENCODER? R

e Communication device that controls the
motion of an operating device
o Helps determine speed/position of a
motor
e Encoders convert motion to an electrical
signal that can be read and interpreted by the
RoboRIO
o The encoder sends a feedback signal
that can be used to determine position,
count, speed, or direction
e Ex. rotary encoder
o Converts angle of a shaft to digital or
analog code

TYPES OF ENCODERS

e Relative (Incremental)

o Shines two lasers through a rotating disc

o The number of times the beam is broken
determines the amount of rotation which
is added to a counter

o Relative encoders are reset every time
the robot is turned on

e Absolute
o A code is read from the disk using the
lasers to determine the position -

o Absolute encoders will know their even if *
the robot is powered off

N
2930 12

18 k)
17 46 15 14

Absolute

PROGRAMMING ABSOLUTE ENCODERS @)

absEncoder = new DutyCycleEncoder
Subsystem:
e Construct the .c double getPosition
DutyCycleEncoder object return absEncoder.get

e Create a method to return
the encoder position as a

double
Command: @Override
e Pass inthe subsystem lic void execute() {

if(subsystem.getPosition() > 100

e Access pOSitiOﬂ USing subsystem.stop();

getPosition(), then utilize
it to perform an action

THANK YOU

https://cougarrobotics.com/

@ cougar1403@gmail.com

@team1403

