
Sensors & Motors
Misha G. and Shashank P.

OUtline

DIO Sensors

PWM

CAN Devices

Analog Sensors

Motors

What is a sensor?

● A sensor is a device that picks up on information

within its environment and converts that to an

electrical signal to use create some sort of output

○ Several types: ex. Distance, rotation,

temperature, force, etc.

● Applications

○ Subsystems: ex. Intake, Elevators, Shooter

RoboRIO

DIO PWM

Analog

DIO Sensors

WHAT IS DIO?

● Stands for “Digital Input/Output”
● Connects to the DIO ports on the RIO
● In most cases, digital signal is the voltage in a wire and it is a binary value, either 0 or 1

○ Measured with the 5V difference between power & ground
● Sensors with two states are almost always digital sensors
● 10 DIO ports on the RIO

○ S → signal (white)
○ V → power (red)
○ ⏚ → ground (black)

● Don’t connect your power to ground or vice versa (power light on RIO will turn red)

Switches & buttons

● Buttons and switches are either pressed

or not pressed

● Can be used for physical constraints or to

detect game pieces

Photogate/Beam Break

● Sensor with a laser that can be broken
● Two states
● Some example use cases

○ Check height of an elevator
○ See if object has passed through

some opening
○ Check if game piece is loaded inside

of shooter

Programming Digital INputs

Subsystem:

● Define a DigitalInput and

pass it through constructor

● Create getPhotoGateValue()

method to return the

boolean value

○ Boolean from

photoGate.get()

Programming Digital Inputs

Command:
● Call the subsystem methods

inside of the command
● Use the boolean values for

logic
Constants:
● Put the DIO ID of the

photoswitch
Robot Container:
● Define the subsystems and

commands

Analog Sensors

WHat are analog inputs?

● Used for sensors with values
that vary over a range
○ Values range from 0 to

255
● Signal is continuous, but

provides different values
based on sensor readings

● 4 analog ports on the RIO

Potentiometers

● Variable resistor
○ Output voltage changes
○ Resistor → component that

regulates flow of electrical
current

○ Turning the knob changes
the resistance between outer
two connections

○ Middle connection = “wiper”
● Another way to measure rotation

on a robot
● Example usage: adjusting the

speed of a motor

Programming Potentiometers

Subsystem:
● Construct AnalogPotentiometer
● A double value is returned

through getPotentiometerValue()
method
○ Uses potentiometer.get()

Programming Potentiometers

Command:
● Call the subsystem methods

inside of the command
● Use the double value for

logic
Constants:
● Put the Analog ID of the

potentiometer
Robot Container:
● Define subsystem and

command

Hall Effect Sensor

● Similar to a switch but uses
the Hall effect to detect
magnetism

● Does not require physical
touch, can detect through
non-magnetic objects

● Can be digital or analog
○ ThriftyBot Hall effect

sensor is digital
○ CANCoder is analog

PWM

PWM - Pulse Width Modulation

● This type of data transfer is an output on
the RoboRIO

● The RoboRIO cycles the signal line on and
off at varying times

● Pulsing power supply on and off at a fixed
voltage

● Ex. LED → brightness
● Ex. Motors → speed
● Duty Cycle: current is flowing through the

circuit a % of the time
● Ex. if 50% then on time = off time
● Used to get an analog output

Servo

● Servos use the PWM signal as an
angle

● 100% duty cycle is maximum
angle

● 0% duty cycle is its minimum
angle

● Used for small movements
○ Pushing a basic locking

mechanism into place

PWM Motor Controllers

● Motor controllers take the input signal and scale
the range
○ RoboRIO Motor
○ 0V to +5V => -12V to +12V

● Common PWM motor controllers include the
REV SPARK Max and SPARK Flex

Can Devices

What is Can?

A CAN Bus is a chain that allows devices
across your control system to
communicate with each other

High (Yellow)

Low (Green)

Devices have to
be ID’d in order to

used them

pros cons

pros and cons of can

● Modern system, many devices
switching to it

● Reduces amount of wiring
needed to connect multiple
devices

● Communication is quick

● Networks are fragile, one break
can destroy the entire network

● Device firmware and CAN IDs
need to be set up properly

● CTRE and REV CAN buses can
be incompatible (CAN 2.0 vs
CAN FD)

can sensors

- CAN allows a lot of data to be transmitted to and
from multiple devices while minimizing wires

- Examples of CAN sensors:
- Rotary encoders like the WCP ThroughBore

encoder or the CANcoder
- IMUs like the Pigeon 2.0
- Distance sensors like the CANrange

- Digital sensors can be connected to the CAN bus
through devices like the CTRE CANdi

CAN topology Comparison

Daisy Chain

- Devices connected in a line
- Most common method
- Recommended by part makers

like REV, CTRE and WCP
- If one device fails, can bring

down the entire network

Star

- Devices connected in branches
- Much less common
- Not recommended by part

manufacturers due to
instabilities and issues

- If one device fails, network can
still work with other devices

Example:
CAN Star
device for
branching

1676
Pascack
Pi-oneers

Motors

Motors

- Motors provide powerful, instant rotational
movement

- Powers everything from shooters to swerve
drive

- Most common motors include Kraken x44/x60
and Neo 1/2/Vortex

- Nowadays, most motors are brushless

comparing motors

1. Kraken X44 (7530
RPM)

2. NEO Vortex (6784
RPM)

3. Kraken X60 (6000
RPM)

4. NEO 2.0 (5676
RPM)

1. Kraken X60 (7.09
Nm)

2. Kraken X44 (4.05
Nm)

3. NEO 2.0 (3.75 Nm)
4. NEO Vortex (3.6

Nm)

speed torque price

1. Kraken X44 &
Kraken X60 ($218)

2. NEO Vortex ($90)
3. NEO 2.0 ($55)

Programming Motors

Subsystem:
● Construct CANSparkMax Object
● Create method for setting the

motor speed
○ Motor speed is set as a

percent duty cycle
○ Between -1.0 and 1.0

Programming Motors

Command:
● Define subsystem methods inside

the command
● Use sensor logic to determine

when/how to run motor
Constants:
● Define the CAN ID of the motor

○ CAN ID found in REV
Hardware Client or Phoenix
Tuner, depending on motor
controller type

Robot Container:
● Define the subsystem and

command

Using Rev Hardware Client

● The Rev Client can
○ Update Software
○ Set ID for motor controllers
○ Run motors

● Using included USB-C wire,
connect to any SPARK Max that is
on the CAN Bus

● If robot is on, all controllers is
detected

● If robot is off, only 1 controller is
detected

Using Phoenix Tuner X

● Using Phoenix Tuner (X) you can
○ Update Software
○ Set ID’s of CTRE

sensors/motor controllers
○ Test motors and sensors

● Connect to the RoboRIO
● All the devices should appear on

the CAN Devices tab
● Can configure specific devices

individually

What Is An Encoder?

● Communication device that controls the
motion of an operating device
○ Helps determine speed/position of a

motor
● Encoders convert motion to an electrical

signal that can be read and interpreted by the
RoboRIO
○ The encoder sends a feedback signal

that can be used to determine position,
count, speed, or direction

● Ex. rotary encoder
○ Converts angle of a shaft to digital or

analog code

Types of Encoders

● Relative (Incremental)
○ Shines two lasers through a rotating disc
○ The number of times the beam is broken

determines the amount of rotation which
is added to a counter

○ Relative encoders are reset every time
the robot is turned on

● Absolute
○ A code is read from the disk using the

lasers to determine the position
○ Absolute encoders will know their even if

the robot is powered off

IncrementalAbsolute

Programming Absolute Encoders

Subsystem:
● Construct the

DutyCycleEncoder object
● Create a method to return

the encoder position as a
double

Command:
● Pass in the subsystem
● Access position using

getPosition(), then utilize
it to perform an action

THANK YOU
https://cougarrobotics.com/

cougar1403@gmail.com

@team1403

