
Autonomous Overview

Sequential and Parallel Commands

The Commands for autonomous are controlled by sequential command groups and

parallel commands. The sequential command group contains a list of commands to run. When

the group is scheduled, it handles the scheduling and ending of the commands in its list in

sequential order. Parallel commands contain a list of commands to run as well as a list of “end

commands” that determine when the parallel command is finished. Parallel commands can be

run in the sequential command group and can be used to run several commands at the same

time, such as shooting while aiming the turret. The parallel command ends when all of the

commands that are labeled as end commands are finished, which allows for one command to

easily control the termination of the rest of the commands in the parallel command.

Cougar Scripting

Team 1403’s Cougar Scripting system is a robust system that is used to create sequences

for autonomous control of the robot. Scripts can be created through the use of the Cougar

Script Editor which is a drag and drop graphical user interface that allows for creation and

modification of cougar scripts and provides a preview of the projected actions of the robot. The

script is then exported to the robot and can be interpreted and executed by the robot. The

system allows for easy modification of the game or robot.

The Cougar Script editor is used to create, modify, preview, and export Cougar Scripts. In

the editor, there are three key sections. The queue, which is located on the left, contains a list of

RobotCommands that can have commands inserted or taken out. The fields of the commands

can be edited by clicking on them while they are in the queue. The command list, located to the

right of the queue, is used to create new commands. The preview, located to the right of the

command list, shows a preview of the motion and actions of the robot for the current script.

When the mouse is hovered over the image, the position of the cursor is reported above the

preview in feet, with 0, 0 being in the center. Autonomous sequences can be easily expanded or

changed to accommodate changes to the robot and its commands.

The script will be exported and read from top down order into a JSON file, which is then

deployed onto the RIO. When the Robot is initialized, the script is parsed and stored in a

hashmap.

Programming Packet FIRST Team 1403 Cougar Robotics Page 1 of 10

Programming Packet FIRST Team 1403 Cougar Robotics Page 2 of 10

Hardware Overview

Sensors and Actuators

Each of the subsystems on the robot uses a variety of sensors in order to record the

happenings of the physical system to allow for useful control systems. Following are a list of

subsystems, the sensors they use, the ports of them. Their purpose will be explained later with

each subsystem.

Subsystem Port Device Use

Drivetrain 10 REV SparkMax Controller Front Left

9 REV SparkMax Controller Back Left (Follows Front
Left)

2
REV SparkMax Controller Front Right

1
REV SparkMax Controller Back Right (Follows Front

Right)

Turret 3 REV Through Bore Encoder
(Absolute)

Reading Angle

7 TalonSRX Yaw Control

1 Hall effect Resetting

Shooter 14 TalonSRX
Grayhill Encoder

Left Shooter
Read Velocity

13 TalonSRX Right Shooter (Follows Left
Shooter)

Hopper 8 TalonSRX Left Motor

Programming Packet FIRST Team 1403 Cougar Robotics Page 3 of 10

1 TalonSRX Right Motor

Upright 4 TalonSRX Motor

Color Wheel
2

RevRobotics ColorSensor V3 Read Color

5
TalonSRX Wheel Motor

Intake
3

VictorSPX Run Belts

4
VictorSPX Extension Motor

9 Through Bore Encoder Read Extension Angle

Climber 2 TalonSRX Left Climb

3 TalonSRX Right Climb

Servo Left Ratchet

Servo Right Ratchet

Photogate Top Sensor

Photogate Bottom Sensor

Programming Packet FIRST Team 1403 Cougar Robotics Page 4 of 10

Joystick Input

Joystick Button/Joystick Function

Driver Left Stick Left Drivetrain

Right Stick Right Drivetrain

Hold LB Toggle Arcade Drive

Hold Back Color Wheel

Hold LT Manual Color Wheel Control

Operator Left Stick Control Turret

Hold B Activate Field Relative Control for Stick

Hold Y Activate Manual Control for Stick

Hold A Activate Limelight Tracking

LB Run Upright Reversed

RB Run Intake

RT Intake Extension Out

LT Intake Extension In

Right Stick Run Feeder Manual

Hold X Run Upright When Shooter is Ready

Drivetrain

Overview of Functionality

The code for the drivetrain consists of four REV SPARK MAX motor controllers (two on

each side), with the back controllers following the front ones. The front two use the built in PID

Programming Packet FIRST Team 1403 Cougar Robotics Page 5 of 10

to power, to ensure that when the battery is at low voltage, it will still drive straight, and it

allows for more consistent autonomous driving capabilities.

The driver is able to use two modes of control to drive: tank drive, and arcade drive.

Tank drive allows for each joystick to control the velocity for its respective side of the drivetrain,

while arcade drive uses one joystick to control the forward velocity and the other to control

angular velocity. This makes it easier for the driver to go directly forward/backwards and

achieve reliable point turns.

Commands

NEODrivetank is the default teleoperated driving command, and allows the driver to use

both tank drive and arcade drive.

For autonomous, there are three main commands which allow for driving in

autonomous: TurnGyro, DriveTrapezoidal, and TurnArc. TurnGyro uses an ADXRS450 gyro in

tandem with PID to make the robot use a point turn to orient itself to a desired angle.

DriveTrapezoidal uses our custom-made trapezoidal profile generator to generate velocity

profiles given the goal distance, and start and end velocities (to allow for smoothly chaining

commands together), and sets the motor setpoint speeds to the output of the profile. It also

uses PID on the distance travelled to account for error in overshooting/undershooting its

current vs. expected distance. Finally, TurnArc takes in an arc radius and angle to turn in a

circular arc, and it can be smoothly chained with DriveTrapezoidal (or other TurnArcs) to have

versatile driving.

Turret

Overview of Functionality

The turret consists of an absolute encoder to record its position, a hall effect to allow the

encoder to reset on startup, a Limelight 2+ for tracking and distance calculation, and a TalonSRX

to turn it. The code will constantly track the orientation of the turret to ensure that it stays

within the valid area (due to their being a mechanical deadzone). The turret will automatically

Programming Packet FIRST Team 1403 Cougar Robotics Page 6 of 10

ignore setpoints to the PID that will enter this deadzone, and will go to the nearest point

outside the deadzone if it is given a point within it.

It has field relative capabilities, meaning it can maintain an angle relative to the

orientation of both the robot and the field, and orientations given by the operator automatically

are converted to become field relative.

Commands

At the start of every match, the turret will automatically reset itself using a hall effect

sensor and two magnets to ensure that it will never sweep past the deadzone. It will sweep in

one direction until one magnet sees the hall effect, and it will sweep in the other direction for a

short amount of time to ensure that it did not see the wrong magnet, and finally it will apply

the reading as an offset to the turret angle PID. The purpose of the second magnet is to give it a

lower chance of failing on startup.

For operator control, the TurretPassiveControl allows for the varying forms of

functionality using a state machine to switch between control modes. There are 6 states in this

machine: Idle, percent output, vision, field relative, reset1, and reset2. After resetting on

startup, the default state is idle in which the turret will maintain its current robot relative angle,

and the operator can switch through the other control modes using buttons. The variety of

controls ensure that the operator is able to precisely manipulate the turret to easily aim it at the

target without needing to worry about the deadzone.

For autonomous scripting, SetTurretAngle, StabilizeTurret, and AimTurret allow for

setting the field relative angle of the turret, stabilizing it so it will offset the gyro turning of the

robot, and limelight vision tracking respectively.

Programming Packet FIRST Team 1403 Cougar Robotics Page 7 of 10

Shooter

Overview of Functionality

The shooter consists of two TalonSRXs, one with a grayhill encoder to measure velocity.
It also keeps track of the hopper and upright, and allows them to run simultaneously when the
limelight is aligned and when the RPM is approximately matched to the setpoint, to ensure that
no balls are fed while the shooter is still accelerating so the shots can be consistent.

Commands

For teleoperated control, the ControlledShoot command allows the operator to use a

button to set the speed of the shooter based on the distance reading of the limelight, and the

shooter is able to convert that reading into an RPM utilizing interpolated ideal data points. The

operator is able to prep the shooter up to the desired RPM and hold a button to have the

upright feed the shooter balls when the limelight is aligned and when the velocity is

approximately matched, so that they will not need to worry about needing to stop holding the

button. Additionally, the limelight is used to approximate the robot’s distance from the target,

and the field relative angle is used to adjust so that the limelight centers such that it is aiming at

the inner port, allowing the operator to easily shoot from anywhere by the press of a button.

The autonomous commands consist of one to prep the shooter while other commands

are running, and a matched RPM mode which will run for a set amount of time, feeding the

shooter when it is ready for a set amount of time.

Programming Packet FIRST Team 1403 Cougar Robotics Page 8 of 10

Intake

Overview of Functionality

Team 1403’s Intake subsystem allows the robot to manipulate the game pieces on the

field. Using two motors and an absolute encoder, Team 1403 is able to extend the intake beyond

the bumpers as well as control the belts to retrieve the power cells on the game field.

Commands

The IntakeCommand allows the Intake subsystem to manipulate the power cells as well

as extend beyond the bumpers. When executing, the belts run through a percent output when a

joystick button is pressed. However, if the button is lightly pressed, then the intake would not

run because there are instances when a button is not completely deactivated, which causes the

intake to continue to run. As a result, we implemented a deadzone so that if the speed of the

belts were less than the dead zone, it would stop the intake. Another button would activate the

intake extension, which runs a method which determines if the intake is extended or tucked in.

If the intake is tucked in, the button would cause the intake to extend to a specific angle, which

we determined by getting the angle from the absolute encoder. The intake would stay on the

angle due to the position PID.

Programming Packet FIRST Team 1403 Cougar Robotics Page 9 of 10

Control Panel

Overview of Functionality

The Control Panel subsystem makes sure that the robot is able to rotate the color wheel

3-5 rotations and spot the desired color. Using the color sensor and a motor, we use a wheel to

control the rotations of the color wheel while the color sensor observes the color on the wheel.

Commands

First, each color had a certain RGB value according to the color sensor. So, we used string

types to determine the color according to the sensor. However, since the wheel is on a separate

location compared to the goal location, we had to state that the color sensed on the control

panel is two colors behind the goal color. For instance, if the target color is yellow, the control

panel would stop rotating the color wheel when the color sensor senses green.

Programming Packet FIRST Team 1403 Cougar Robotics Page 10 of 10

